EE105 – Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Terminal Gain and I/O Resistances of MOS Amplifiers

For the gain, R_i, R_o of the whole amplifier, you need to include voltage/current dividers at input and output stages

Summary of MOS Single-Transistor Amplifiers

	MOS	Common Source	Common Source with Deg.	Common Drain	Common Gate
(of Six	R	8	8	8	Small 😕
M	R _o	Large	Very Large	Small	Large
M	A _V	Moderate	Small	~ 1	Moderate
•	f _H	Small	Moderate	Large	Large

Single Stage Amplifier Cannot Meet All Requirements

- For example, a general purpose operational amplifier requires
 - High input resistance $\sim 1M\Omega$
 - Low output resistance ~ 100Ω
 - High voltage gain ~ 100,000 √
- No single transistor amplifier can satisfy all spec's
- Cascading multiple stages of amplifiers offers a path towards the design

Multistage Amplifiers

- Usually
 - An input stage to provide required input resistance
 - Middle stage(s) to provide gain
 - An output stage to provide required output resistance or drive external loads
- More gain!
 - Gain/stage limited, especially in nanoscale devices
- Improve Bandwidth
 - De-couple high impedance nodes from large capacitors
- DC coupling (no passive elements to block the signal)
 - Use amplifiers to naturally "level shift" signal

Impedance "Match"

- On-chip circuits often use "voltage/current" matching to minimize loading
- Keep in mind the input resistance and output resistance of each type of stage so that the loading does not create an undesired effect

- TA	_	
	Ideal R_{in}	Ideal R _{out}
Voltage Amplifier ∨ → ✓	8	0
Current Amplifier ➤ T → T	0	∞
Transconductance Amplifier	8	∞ <u>∠</u>
Transresistance Amplifier	0	0

Two-Stage Voltage Amplifier

Boost gain by cascading Common-Source stages

Can combine into a single 2-port model Results of new 2-port: $R_{in} = R_{in1}$, $R_{out} = R_{out2}$

CS Cascade Analysis

Results of new 2-port:

$$R_{in} = R_{in1} = \infty$$

$$R_{out} = R_{out2} = \text{ follow}$$

$$A_{V} = v_{out}/v_{in} = \text{ Virt } \text{ Vort } = (-g_{m1} \cdot (f_{o}||f_{oc}))$$

$$\text{Find } \text{ Find } \text$$

CS Cascade Bandwidth

Two time constants:

$$\tau_1 = \left(\begin{array}{c} C_{gs} + C_{m} \right) - \left(\begin{array}{c} \Gamma_{o} || \Gamma_{oc} \end{array} \right) \\ \tau_2 = 0 \quad \text{M}$$

Bandwidth Extension

Common Source stage has high gain, but low bandwidth

Note that Miller effect is the culprit

Follower stage can buffer source resistance from

Miller cap

Bandwidth Extension Using Source Follower (SF)

CS Example with Cap Load

- C_{in} and C_s are very large, therefore they look like short circuits to the AC signal.
- If C_L is very large, its pole dominates, let's analyze

CS with Cap Load – Small Signal

- What are the time constants associated with the capacitors in this circuit?
- What can we do if we have to drive a large C_L?

CS with Cap Load – Bandwidth

- How can we reduce the impact of C_L?
- One way is to reduce the resistance R_d, but this reduces our low-frequency gain
- To recover the gain we can increase g_{m1} .

 What does this cost us?

CS with Cap Load – BW Extension

 A better way to extend the bandwidth is to add a sourcefollower stage.

Similar to previous example

CS with Cap Load – BW Extension

- By adding a CD (Source Follower) we can increase the bandwidth
- It costs us power for the CD stage
- Remember that increasing the BW by increasing g_{m1} costs us
 much more

- Common source provides gain, CG acts as a buffer, but is it even helping?
- How do you bias this circuit?

High Rout.

Headroom problems

Merged CS + CG = Cascode

Let's apply 2-port small-signal analysis

- In this case, we care about the input current to the second stage
- Note that the input resistance of the CG is low, therefore the majority of the CS current is fed to the CG

•
$$A_v = \frac{V_{ovt}}{V_{in}} = \frac{7_{in}}{V_{ovt}} =$$

Cascode Bandwidth

- Draw in the C_{gs} and C_{gd} capacitors.
- Which ones are Miller effected?
- Is this better or worse than a CS without a CG?

Cascode Bandwidth

Draw in the capacitors and input resistance

Cascode Biasing

- CG has a very large output resistance
- Loading it with R_D is likely to reduce the voltage gain
- We can increase the gain by using a current source load, but r_{oc} needs to be very large. Can use a cascode current mirror!

Complete Amplifier Design

Goals: $g_{m1} = 1 \text{ mS}, R_{out} = 5 \text{ M}\Omega$

For simplicity, let's assume all g_m and r_o values are equal

Av = Gon, Bout = gmigmz Room 15.

Bias Current & Device Sizing

Need to know process parameters to solve for W/L

$$k' = 100 \mu A/V^2$$

$$\lambda = 0.1 \, [V^{-1}]$$

$$r_o = \frac{1}{\lambda I_{DS}} = 100k\Omega$$

$$I_{DS} = \frac{1}{.1V^{-1} * 100k\Omega} \neq 100\mu A$$

$$g_{m} = \sqrt{2k' \left(\frac{W}{L}\right)} I_{DS} = 1mS$$

$$\frac{W}{L} = \frac{g_m^2}{2k'I_{DS}} = \frac{(1mS)^2}{2*100\mu*100\mu A} = 50$$

Output (Voltage) Swing

Need to know $V_{GS} - V_T$ (e.g. V_{DSAT} , V_{OV})

